

ONERA

THE FRENCH AEROSPACE LAB

www.onera.fr

3D laser imaging techniques to improve USaR operations for wide-area surveillance and monitoring of collapsed buildings

Angelos Amditis, Alexandre Amiez, George Athanasiou, Jimmy Berggren, Alexandre Boulch, Nathalie Bozabalian, Diogo Duarte, Paul-Edouard Dupouy, Pierre Escalas, Markus Gerke, Frédérique Giroud, Christophe Grand, Laurent Hespel, Norman Kerle, Yoann Lambert, Francesco Nex, Bertrand Le Saux, Nicolas Riviere, Anita Schilling, Gustav Told

Nicolas RIVIERE

ONERA – Optronics Department

Light Matter Interaction, Imaging and Detection Laser Systems Unit 2 av Edouard Belin – F31055 Toulouse – France

Phone: +33 (0) 562 252 624 E.mail: riviere@onera.fr

General context

Our business, expertise in the field and facilities

ONERA, The French Aerospace Lab

French actor of research on aeronautics, space and defense

2,100 persons

15% of PhD students

8 Sites

General context

Our business, expertise in the field and facilities

- How can we improve the vision for situational awareness?
 - ☑ To perform the **strategic surveillance** of the environment for various worldwide operations
 - ☑ To perform the enhanced navigation of an aircraft, a drone or a ground vehicle
 - ⇒ Imaging systems must operate at night in all ambient illuminations and weather conditions

 Active / Passive Imaging systems for security and defense applications

- Performance Analysis of Sensors at ONERA
 - ☑ ONERA develops new systems and models for remote sensing applications based on laser sources (imaging or not)

To evaluate **original** / **complementary** imaging techniques *vs* conventional imaging systems To identify **new concepts** (3D, hyperspectral...) using new sensors

What about Laser Imaging Techniques?

① 2D Flash Laser Systems

Burst illumination imaging system combines active laser illumination with time gating Long range aerial / terrestrial applications: Defense, Security and Survey Targeting, camouflage, observation, up to identification

2 3D Laser Scanner Systems

Range estimation using pulsed laser and scanner ⇒ 3D point clouds restoring the shape of the target Time Of Flight (TOF) + Full Wave Form imaging technique Applications to camouflage, detection, up to identification

3 3D Focal Plane Array (FPA) Systems

Multi-pixel 3D arrays (eg. photon counting avalanche photodiodes) provide a 3D laser image with one single large laser beam, thanks to the temporal independence of each pixel on the matrix 3D Geiger-mode Avalanche PhotoDiode (GmAPD) array offers single photon detection capability

① 2D Flash Laser Systems

Burst illumination imaging system combines active laser illumination with time gating Long range aerial / terrestrial applications: Defense, Security and Survey Targeting, camouflage, observation, up to identification

- √ Observation at long range
- √ 2D video mode
- √ Identification
- ✗ Resolution and SWaP?

2 3D Laser Scanner Systems

Range estimation using pulsed laser and scanner ⇒ 3D point clouds restoring the shape of the target Time Of Flight (TOF) + Full Wave Form imaging technique Applications to camouflage, detection, up to identification

2

- √ Observation at short / medium range
- ✓ Recognition
- √ Full wave form information, not only first or last echoes
- Single image

② 3D Laser Scanner Systems

Range estimation using pulsed laser and scanner ⇒ 3D point clouds restoring the shape of the target Time Of Flight (TOF) + Full Wave Form imaging technique Applications to camouflage, detection, up to identification

Enhanced vision in all weather conditions

Natural / controlled bad weather conditions

Cloud chamber

A facility to create controlled fog and rain at ONERA

② 3D Laser Scanner Systems

Range estimation using pulsed laser and scanner ⇒ 3D point clouds restoring the shape of the target Time Of Flight (TOF) + Full Wave Form imaging technique Applications to camouflage, detection, up to identification

(2)

Enhanced vision in all weather conditions

Natural / controlled bad weather conditions

② 3D Laser Scanner Systems

Range estimation using pulsed laser and scanner ⇒ 3D point clouds restoring the shape of the target Time Of Flight (TOF) + Full Wave Form imaging technique Applications to camouflage, detection, up to identification

Enhanced vision in all weather conditions

Validation of the real-time processing algorithms

Real-time processing

Snow

© Property of Onera. Information of all kinds which may include commercial, financial or technical data cannot be used, reproduced or disclosed without its previous written agreement.

Nicolas Rivière | riviere@onera.fr | 21 May 2017 | 10

ONERA - Opronics Department @2017

3 3D Focal Plane Array (FPA) Systems

Multi-pixel 3D arrays (*eg.* photon counting avalanche photodiodes) provide a 3D laser image with one single large laser beam, thanks to the temporal independence of each pixel on the matrix 3D Geiger-mode Avalanche PhotoDiode (GmAPD) array offers single photon detection capability

- √ Observation at very long range (a pencil at 7km)
- √ 3D video mode
- √ Object detection and surveillance applications
- ✓ Real-time accurate DSM generation
- ★ Small matrix size (128x32pxl)
- ✗ Big data storage

Research and first concepts: TRL 3-4

MATLIS code:

A new version for performance analysis of FWF and 3DFPA imaging systems

3 3D Focal Plane Array (FPA) Systems

Multi-pixel 3D arrays (eg. photon counting avalanche photodiodes) provide a 3D laser image with one single large laser beam, thanks to the temporal independence of each pixel on the matrix

3D Geiger-mode Avalanche PhotoDiode (GmAPD) array offers single photon detection capability

Obstacle detection in high resolution

Cables at several kilometers Day and night vision

Enhanced vision in all weather conditions

Jolimont Tower in Toulouse, France (3km)

INACHUS Project

Objectives and approaches

To achieve a significant time reduction related to Urban Search and Rescue phase

To provide wide-area situation awareness solutions for improved detection and localization of the trapped victims

© Property of Onera. Information of all kinds which may include commercial, financial or technical data cannot be used, reproduced or disclosed without its previous written agreement.

ONERA - Opronics Department @2017

INACHUS Project

Experiments to collect **3D data** with aerial / ground-based systems ⇒ Dense high-accuracy data

- 3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
- 50-100kg, 2-3m rotor span, payload 5-10kg
- 3D measurements in Agesta, Toulouse... Scenarios shared with ALL partners + End-Users

Ground laser scann

Gyrocopter experiments

INACHUS Project

Data fusion from 3D aerial and ground data

Airborne and ground-based laser data collected during common experiments

Input data for subsequent processing (3D data fusion and exploitation)

- 3D measurements through image analysis with light-weight UAV (<5kg)
- Validation test in different weather conditions and comparison with laser imaging

Data fusion
Digital elevation / surface models
Identification by segmentation

INACHUS Project

Performance validation and simulation of the systems

Numerical 3D data point clouds

To test / define strategies of airborne observation considering both ethical issues and USaR requirements

End-to-end / Physical model including optical properties of materials, turbulence effects, bad weather conditions...

INACHUS Project

To achieve a significant time reduction related to Urban Search and Rescue phase To provide wide-area situation awareness solutions for improved detection and localization of the trapped victims

Expected results

New methods to refine priority areas High resolution 3D digital surface/terrain models Measured on a disaster site Probability map of survival space, maps of rescue paths and dasymetric population New data processing and fusion methods New semantic analysis methods

Based on satellite data + actual pop. dynamics estimation

3D mapping (UAV / ground measurements + passive / laser)

3D damage assessment and SoTA process

Point clouds and images

Annotation of point clouds

Data exchange to the COP

Semantic labelling

