

7th Framework Programme

FP7-SEC-2012.4.3-1

Next Generation Damage and Post-Crisis Needs Assessment Tool for Reconstruction and Recovery Planning Capability Project

Methodology for integrated satellite and airborne data-based synoptic damage assessment

Deliverable No.	D4.2		
Workpackage No.	WP4		Synergistic Damage Assessment with Air- and Space- borne Remote Sensing
Author(s)	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel		
Status	Draft		
Version No.	V1.00		
File Name	RECONASS_D4.2_Methodology_for_integrated_satellite_and_airborne_data- based_synoptic_damage_assessment_v1.00		
Delivery Date	03 10, 2016		
Project First Start and Duration	Dec. 1, 2013; 42 months		

"This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no [312718]"

DOCUMENT CONTROL PAGE

Title	Methodology for integrated satellite and airborne data-based syn damage assessment	
Authors	Name	Partner
	Norman Kerle	ITC
	Markus Gerke	ITC
	Francesco Nex	ITC
	Anand Vetrivel	ITC
Contributors	Name	Partner
Peer Reviewers	Name	Partner
	Mata Frondistou	RISA
	Rickard Forsén	FOI
Format	Text-MS Word	
Language	en-UK	
Work Package	WP4	
Deliverable Number	D4.2	
Due Date of Delivery	31/07/2016	
Actual Date of Delivery	03/10/2016	
Dissemination Level	PP	
Rights	RECONASS Consortium	
Audience	public restricted internal	
Revision	(none)	
Edited by		
Status	 ☐ draft ☑ Consortium reviewed ☑ WP leader accepted ☑ Project coordinator accepted 	

REVISION LOG

Version	Date	Reason	Name and Company
V0.01	26/07/2016	First draft	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC)
V0.02	15/09/2016	Review process concluded	Mata Frondistou (RISA), Rickard Forsén (FOI)
V0.03	22/09/2016	Review comments addressed, Second draft	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC)
V1.00	03/10/2016	Final document to be submitted in EC - formatting and final review	Evangelos Sdongos (ICCS)

TABLE OF CONTENTS

Documer	nt Control Page	2
Revision	Log	3
Table of	Contents	4
List of Ta	nbles	6
List of Fi	gures	7
Abbrevia	tions and Acronyms	8
Glossary	of Terms	9
Executiv	e Summary	10
1 Intro	oduction	11
1.1	Objective	11
1.2	Structure of the document	11
Validatio	n of satellite damage maps	12
1.3	Background	12
1.4	Framework for validation process	18
1.5	Examples of the damage mapping functions	
1.5.1 1.5.2	Damage representation of UAV assessments Mapping function for point-based damage map	
1.5.2	Mapping function for grid-based damage map	
1.5.4	Mapping function for heat maps	
1.6	Experiment and results	23
1.7	Conclusion	26
Calibratio	on of satellite damage maps	27
1.8	Background	27
1.9 1.9.1	Conceptual framework for calibration process	27
1.10	Discussion and conclusion:	
-		
	ed satellite image segmentation and classification for assessing disaster damage usi cific features with incremental learning	
1.11	Background	
1.12	Objective	
1.13	ء Methodology	
1.13.1	1 Step 1: Over-segmentation of image	. 31
1.13.		
1.13.3 1.13.4		
1.14 1.14.1	Experiments and results	
1.14.		. 34

1.14.	.2 Experimental steps:	
1.15	Discussion and conclusion	
1.16	Implementation details	
Conclus	ions	
	ces	

Confidential

LIST OF TABLES

Table 2-1. Overview of damage maps produced by different mapping agencies (maps show damage caused by the 2010 Haiti earthquake) 16 37

Table 4-1. Implementation details of the methods reported in this chapter

Confidential

LIST OF FIGURES

Figure 2-1. Multi-view UAV images of the damaged church after 2010 earthquake in Mirabello (left) and generated point cloud from these images (right)	3D . 13
Figure 2-2. Impact of viewing direction in damage assessment: building looks undamaged in nadir view but looks severely damaged in oblique-view	
Figure 2-3. Impact of spatial resolution in damage assessment: subset of airborne oblique image with average ground sampling distance (GSD) of 14 cm (left) and subset of UAV image with average GSD of 1 cm (right).	
Both depict the same church in Mirabello, Italy, after the 2012 earthquake	
Figure 2-4. Synthetically generated 3D model of the building annotated with damages	
Figure 2-5. Depiction of mapping UAV assessments from RECONASS to information in the damage map	
Figure 2-6. Example of 2D polygon as spatial representation of buildings, and damage evidences which are detec from UAV images	. 20
Figure 2-7. Example of classifying the UAV damage evidences according to the label classes used in the selected map for validation	
Figure 2-8. Workflow for validating the grid-based damage map using the UAV assessments.	
Figure 2-9. Subset damage map produced by DLR_ZKI for Port-au-Prince after a 2010 earthquake	
Figure 2-10. The damage labels from field survey are overlaid on the same grid boundaries used in the damage m The count of independent labels lying within each grid is depicted in a histogram	nap.
Figure 2-11. Result of validatation process depicting the deviations in the assessments from satellite- and	. 23
reference-based (e.g., UAV assessments) data sources.	. 25
Figure 3-1. Framework for calibration of damage maps using the information from RECONASS system installed	. 23
locations	. 28
Figure 4-1. Overall work flow	. 33
Figure 4-2. The cumulative error, number of samples used to update the classifier and the processing time for 16 online classifiers when associated with GLCM, Gabor and CNN are depicted in plots (a), (b) and (c) respectively	. 36

ABBREVIATIONS AND ACRONYMS

ABBREVIATION	DESCRIPTION
CNN	Convolutional Neural Network
EMS-98	European Macroseismic Scale 1998
GLCM	Grey Level Co-occurrence Matrix
GIS	Geographical Information System
GSD	Ground Sampling Distance
SVM	Support Vector Machines
UAV	Unmanned Aerial Vehicle
VHR	Very High Resolution
WP4	Work Package 4

GLOSSARY OF TERMS

The number of occurrences of each category in a given boundary
Point on the ground directly in line with the remote sensing system and the centre of the earth.
Image acquired with the camera intentionally directed at some angle between horizontal and vertical orientations.
Extent to which adjacent images or photographs cover the same terrain, expressed as a percentage.
Regular repetition of tonal variations on an image or photograph.
Ability to separate closely spaced objects on an image or photograph. Resolution is commonly expressed as the most closely spaced line-pairs per unit distance that can be distinguished. Also called spatial resolution.
Ratio of distance on an image to the equivalent distance on the ground.
Area on the ground that is covered by an image or photograph.
Techniques used to learn the relationship between independent attributes and a designated dependent attribute (the label). Most induction algorithms fall into the supervised learning category.
Frequency of change and arrangement of tones in an image.

Confidential

EXECUTIVE SUMMARY

In RECONASS, remote sensing is one of the technologies used for assessing the damage state of the buildings after a disaster event. Pertaining to that, in WP4 of RECONASS, a remote sensing based exterior building damage assessment subsystem was developed solely by ITC and delivered in D4.1. The developed sub-system is fully automatic, requiring only the UAV-captured images as input. From those images, the sub-system automatically generates a so-called 3D point cloud of the scene. Using the images and 3D point cloud, the sub-system automatically identifies the completely collapsed and intact buildings in the scene. The intact buildings are further analysed for the presence of damage evidences, such as spalling and openings in building caused by the damage along every exterior element of the building. Also, the debris and rubble piles around the buildings are detected and quantified in terms of m³.

One of the other objectives of RECONASS is how to determine the use of the local damage assessment provided by the developed sub-system using the UAV images of the RECONASS monitored and neighbouring buildings to validate and calibrate the damage maps produced for larger areas. This objective is proposed because in general, after a disaster event, numerous damage maps are produced by many agencies to aid emergency response actions. However, these maps are often not validated due to lack of ground truth data, which creates challenges for potential stake holders to choose a suitable and reliable damage map. Moreover, assessments in satellite maps are often found to be either under- or overestimating actual damage due to various reasons. Perhaps the variations in assessments could be systematic with respect to some physical or functional entities associated with the damage area. In such case, the systematic variations can be corrected by designing an appropriate calibration procedure. Also, operational damage maps continue to be generated by manual visual interpretation, typically of satellite images. However, with the advancement in the technologies, automated damage detection from satellite images is becoming feasible. For example, supervised learning models developed based on appropriate training samples have been shown to be capable of mapping damage automatically from the images. However, for all the aforementioned processes such as validation, calibration and automated damage mapping from images, a significant number of ground truth samples is required. Manual collection of ground truth data is typically not practical in case of emergency circumstances. The local assessment of damaged buildings with the RECONASS sub-system is considered to be more accurate and reliable compared to the assessment from satellite images, due to the superior characteristics of UAV images. Hence, these assessments can serve as ground-truth for the aforementioned processes. To address these aims two independent conceptual frameworks are developed for validation and calibration of damage maps using the local assessments from RECONASS subsystem, installed in well-distributed geographic locations, as ground-truth. Also, a method for automated classification of satellite image for damage detection is developed using the supervised learning method by considering the aforementioned type of assessments from RECONASS subsystems as ground-truth samples for training the model.