

7th Framework Programme

FP7-SEC-2012.4.3-1

Next Generation Damage and Post-Crisis Needs Assessment Tool for Reconstruction and Recovery Planning

Capability Project

Per-Building Structural Damage Methodology Report Using Multi-View Oblique Airborne Imagery

Deliverable No.	D4.1					
Workpackage No.	WP4	Workpackage Title	Synergistic Dama and Spaceborne Re	ge Assessment emote Sensing	with	Air
Author(s)	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel					
Status	Final					
Version No.	V1.00					
File Name	'RECONASS_D4.1_Per- Building_Structural_damage_methodology_report_using multi- view_oblique_airborne_imagery_v1.00'					
Delivery Date	14 01, 2016					
Project First Start and Duration	irst Start and Dec. 1, 2013; 42 months					

"This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no [312718]"

DOCUMENT CONTROL PAGE

Title	Per-Building Structural Damage N	Methodology Report Using Multi-
	View Oblique Airborne Imagery	
Authors	Name	Partner
	Norman Kerle	ITC
	Markus Gerke	ITC
	Francesco Nex	ITC
	Anand Vetrivel	ITC
Contributors	Name	Partner
Peer Reviewers	Name	Partner
	Mata Frondistou	RISA
	Evangelos Sdongos	ICCS
Format	Text-MS Word	
Language	en-UK	
Work Package	WP4	
Deliverable Number	D4.1	
Due Date of Delivery	30/11/2015	
Actual Date of Delivery	14/01/2016	
Dissemination Level	PP	
Rights	RECONASS Consortium	
Audience	public	
	restricted	
	internal	
Revision	(none)	
Edited by		
Status	draft	
	Consortium reviewed	
	WP leader accepted	
	Project coordinator accepted	

REVISION LOG

Version	Date	Reason	Name and Company
V0.01	12/11/2015	First draft	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC)
V0.02	17/12/2015	Second draft, Comments from 1 st reviewer (RISA) addressed by authors	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC)
V0.03	12/01/2016	Third draft, Comments from 2 nd reviewer (ICCS) addressed by authors	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC)
V0.04	14/01/2016	Fourth draft, addition of Annexe including implementation code	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC)
V1.00	14/01/2016	Final draft to be submitted	Norman Kerle, Markus Gerke, Francesco Nex, Anand Vetrivel (ITC). Evangelos Sdongos (ICCS)

TABLE OF CONTENTS

<i>DOCUM</i>	ENT CONTROL PAGE 2	
REVISION LOG		
TABLE O	0F CONTENTS	
List of Fi	gures6	
List of To	ables7	
Abbrevi	ations and Acronyms	
Glossary	of Terms	
Executiv	e Summary	
1 Intr	oduction	
1.1	Remote sensing for building damage assessment 11	
1.2	Satellite and aerial images for damage assessment11	
1.3	Limitations with vertical data for building damage assessment13	
1.4	Airborne oblique images for building damage assessment14	
1.5	Unmanned Aerial Vehicles 16	
1.6	Role of remote sensing in RECONASS	
1.7	Objective	
1.8	Structure of the document	
2 Buil	ding detection and delineation 19	
2.1	Background 19	
2.2	Objective	
2.3	Methodology	
2.4	Data used 22	
2.5	Results of building detection and delineation process	
2.6	Conclusion 27	
2.7	Implementation details 27	
3 Identification of structurally damaged areas corresponding to debris and spalling in air-borne oblique images		
3.1	Background 28	
3.2	Objective	
3.3 3.3.1	Methodology	
3.4	Data used and results	

	2 4 4		20
	3.4.1	Dataset 1: UAV Images	36
	3.4.2	Dataset 2: Oblique view manned aircraft images	38
	3.4.3	Dataset 3: Street view Images	40
	5.4.4		41
	3.5	Observations and analysis	42
	3.5.1	Global representation of HoG and Gabor wavelet for damage classification	43
	3.5.2	BoW-based feature representation for damage classification	44
	3.5.3	Impact of choice of learning algorithm	46
	3.6	Conclusion	47
	3.7	Implementation details	47
4	Iden	tification of openings in buildings caused by disaster damage	48
	4.1	Background	48
	1 2	Objective	ло
	4.2		40
	4.3	Methodology	48
	4.3.1	Procedure for gap detection	48
	4.3.2	Procedure for gap classification	49
	<u>4</u> 4	Data used	50
			50
	4.5	Results	51
	4.5.1	Gap detection process	51
	4.5.2	Gap classification	52
	4.5.3	Identification of damaged areas in an image	53
	4.5.4	Classification of delineated gap regions	53
	4.5.5	Gap detection and classification on element level – dataset 3: Nunspeet UAV	54
	4.6	Conclusion	55
	4.7	Implementation details	56
5	Deb	ris volume quantification	57
	5.1	Background	57
	F 2	Objective	
	5.2	Objective	57
	5.3	Methodology	57
	5.3.1	Defining a 3D polygon or boundary for the space occupied by debris:	57
	5.3.2	Voxel-based approach	58
	5.4	Data used	58
	5.5	Results	58
	5.6	Discussion and conclusion	61
	5.7	Implementation details	61
6	Con	clusions	62
-	Com	· · · · ·	
/	Overview of the sub-system		
8	Refe	rences	66
A	nnexes		71
	-		

List of Figures

Fig. 1.1. George Laurence's photo of the San Francisco after the earthquake in 1906	11
Fig. 1.2. Chicago Illinois, 0.5 meter resolution image taken by the Geoeye-1 satellite Copyright © 2010	
GeoEye, Inc.	12
Fig. 1.3. Appearance of damaged building with intact roof in nadir view	13
Fig. 1.4. The 5 different levels that are assumed in the European Macroseismic Scale 1998 (EMS-98)	
(1998). Grade 1-5 corresponds to damage scale D1-D5.	14
Fig. 1.5. The Pictometry camera sensor systems consists of five cameras, one directed nadir, the others	
viewing forward, backward, left and right (Image Courtesy: Blom Group).	15
Fig. 1.6. Portions of building visible in different camera views captured by Pictometry- centre image is	
nadir view and others are oblique view.	16
Fig. 2.1. Building delineation process	22
Fig. 2.2. The delineated buildings projected over the images (highlighted in red) – building delineation	
without use of spectral index as merging criteria (left), building delineation with spectral index as	
one of the merging criteria (right), images © BLOM Italy	23
Fig. 2.3. Example of the impact of the merging criteria threshold on building delineation – (a) $T_{width} > 30$)
cm, and (b) Twidth >50 cm, images © BLOM Italy	23
Fig. 2.4. Subsets of aerial image projected with 3D points of the delineated buildings, images © BLOM	
Italy	25
Fig. 3.1. Remote sensing platforms and their relative altitude, coverage and order of image scale	28
Fig. 3.2. An example for debris, rubble piles and spalling	30
Fig. 3.3. Overall process of the BoW-based damage classification	34
Fig. 3.4. Combinations of feature descriptors and learning algorithms tested for each dataset	35
Fig. 3.5. Samples of image patches in dataset 1- UAV images	37
Fig. 3.6. Samples of image patches in dataset 2, images © Pictometry	39
Fig. 3.7. Samples of image patches in dataset 3- street view images	40
Fig. 3.8. Damage classification of images based on best performing supervised model	42
Fig. 3.9. (a) Local and global gradient pattern of an image patch that contains four objects with differen	nt
dominant orientations, (b) gradient pattern of damaged regions	44
Fig. 3.10. (a) & (b) Detected SURF points are plotted on the image	45
Fig. 3.11. The accuracy produced by the feature descriptors for each dataset when associated with	10
different classifiers	46
Fig. 4.1. Work flow of the gap classification process	50
Fig. 4.2. An example for delineation of a single building from the 3D point cloud, images © Albotix Italy	51
Fig. 4.5. Defineated gap regions in the image	52
Fig. 4.4. An example for a gap due to damage	33 52
Fig. 4.5. An example for a gap due to a natural opening	55
Fig. 4.0. All example for gap due to surface characteristics issue Fig. 4.7. (a) on image out out shows a building with texture loss and evoluted objects. (b) Subject of 2D	34
rig. 4.7. (a) an image cut out shows a bunding with texture-less and occluded objects, (b) Subset of 5D noint cloud corresponding to that building (c) and (d) Voyalized 3D point cloud correspondence with	
bightighted gap voyals images @ Dutch Kadester	55
	55
different positions images @ Dutch Kadaster	55
Fig. 5.1. Subset of UAV image taken after Mirabello earthquake in 2012, denicts the debris area selected	1
for volume estimation	50
Fig. 5.2. 3D points of upper layer of debris areas as denicted in above figure are in blue and the created	59
terrain 3D noints are in red	59
Fig. 5.3. 3D houndary defined for all 3D noints based on alpha shapes	60
Fig. 5.4. Vaxelization of 3D grid snace defined to enclose all 3D noints selected for debric volume	00
estimation.	60
Fig. 5.5. Voxels that lie in the space bounded by the 3D points of upper layer debris and terrain	61
Fig. 7.1. The automated process flow of the remote sensing based damage assessment sub-system	65
	00

List of Tables

Table 2.1. Number of buildings that falls under each category	26
Table 2.2. Results of building detection process	26
Table 2.3. Implementation details of the methods reported in this chapter	27
Table 3.1. Definition of parameters associated with each algorithm/method used in the experiment	35
Table 3.2. Definition of grid search space for tuning the hyper-parameters of the classifiers	36
Table 3.3. Performance of feature descriptors when associated with different learning algorithms for	
dataset 1 comprising patches from the UAV images (bold numbers indicate best performance per	
indicator)	37
Table 3.4. Performance of feature descriptors when associated with different learning algorithms for	
dataset 2 comprising patches from Pictometry images	39
Table 3.5. Performance of feature descriptors when associated with different learning algorithms for	
dataset 3 comprising patches from street view images	40
Table 3.6. Performance of feature descriptors when associated with different learning algorithms for	
dataset 4 (com3109) comprising patches from UAV, Pictometry and street-view images	41
Table 3.7. Naming of datasets based on the image characteristics and number of samples	43
Table 3.8. Implementation details of the methods reported in this chapter	47
Table 4.1. Implementation details of the methods reported in this chapter	56
Table 5.1. Estimated debris volume using the developed methods	61
Table 5.2. Implementation details of the methods reported in this chapter	61

Abbreviations and Acronyms

ABBREVIATION	DESCRIPTION	
BOW	Visual Bag of Words	
DEM	Digital Elevation Model	
DSM	Digital Surface Model	
EMS-98	European Macroseismic Scale 1998	
GLCM	Grey Level Co-occurrence Matrix	
GSD	Ground Sampling Distance	
HoG	Histogram of Gradient Orientation	
RF	Random Forests	
SIFT	Scale Invariant Feature Transform	
SURF	Speeded Up Robust Features	
SVM	Support Vector Machines	
UAV	Unmanned Aerial Vehicle	
VHR	Very High Resolution	
WSN	Wireless Sensor Network	

Glossary of Terms

Histogram	The histogram of an image visualises the distribution of the brightness in the image by plotting the number of occurrences of each brightness.
LiDAR	Light intensity detection and ranging, which uses lasers to stimulate fluorescence in various compounds and to measure distances to reflecting surfaces.
Nadir	Point on the ground directly in line with the remote sensing system and the centre of the earth.
Oblique image	Image acquired with the camera intentionally directed at some angle between horizontal and vertical orientations.
Overlap	Extent to which adjacent images or photographs cover the same terrain, expressed as a percentage.
Pattern	Regular repetition of tonal variations on an image or photograph.
Resolution	Ability to separate closely spaced objects on an image or photograph. Resolution is commonly expressed as the most closely spaced line-pairs per unit distance that can be distinguished. Also called spatial resolution.
Scale	Ratio of distance on an image to the equivalent distance on the ground.
Scene	Area on the ground that is covered by an image or photograph.
Stereo pair	Two overlapping images or photographs that may be viewed stereoscopically.
Supervised learning	Techniques used to learn the relationship between independent attributes and a designated dependent attribute (the label). Most induction algorithms fall into the supervised learning category.
Terrain	Surface of the earth.
Texture	Frequency of change and arrangement of tones on an image.

Copyright RECONASS (Grant Agreement No. 312718)

Executive Summary

In RECONASS, remote sensing is one of the technologies used for assessing the damage state of the buildings after a disaster event. Pertaining to that, in WP4 of RECONASS, a remote sensing based exterior building damage assessment subsystem is being developed solely by ITC. The primary objective is to provide automated detailed information of damages to every exterior element of the building using the remote sensing images and the products derived from them such as 3D point clouds. The primary prerequisites to achieve the objective are 1) automatic delineation of individual buildings and 2) automatic identification of various kinds of damage evidences required for damage assessment such as spalling, openings in building due to damage, debris/rubble piles mapping and quantification. The automatic extraction of those prerequisites demands remote sensing data with rich radiometric and geometry features and significant coverage of building (top + side views). Images of unmanned aerial vehicles (UAV) are the preferred data source, as UAVs are highly flexible in capturing images with specific characteristics, such as high frame overlap, high spatial resolution (rich radiometric features) and with multiple camera views (coverage of top and sides of the buildings). All of these are mandatory for photogrammetric processing and 3D point cloud generation (rich geometric features). The methodologies for performing the aforementioned tasks, i.e. automatic building delineation and damage evidences detection, have been largely developed as part of this sub-system that are specially (but not only) suitable for UAV images and kind of 3D point cloud derived from them. The developed methods are novel in the field of remote sensing based damage assessment. They are tested through numerous experiments using significant number of datasets of different kind. The outcome of the experiments reveals that the developed methods are significant for a reliable damage assessment. The developed methods are part of the remote sensing based building damage assessment sub-system which is fully automatic and requires only the UAV-captured images as input. From those images, the sub-system automatically generates a so-called 3D point cloud of the scene. Using the images and 3D point cloud, the sub-system automatically identifies the completely collapsed and intact buildings in the scene. The intact buildings are further analysed for the presence of damage evidences such as spalling and openings in building caused by the damage along every exterior element of the building. Also, the debris and rubble piles around the building are detected and quantified in terms of m³. All the above derived information as part of this deliverable 4.1 are the base for performing other subsequent tasks in WP4 which will be addressed in the subsequent deliverables in due course. This includes the synergistic use of the derived information with wireless sensor based assessment from WP3 for 1) validation of the outcome of one technology with another; 2) image-based assessment as a proxy in case of any sensor information loss; 3) to improve the sensor based assessment if any inconsistency is observed. Also, the local damage assessment for the RECONASS monitored and neighbouring buildings based on UAV's data are used to validate and calibrate the damage maps of larger areas produced by different agencies based on the satellite images.